
Understand half-sibling misspecification

In this vignette, we investigate the theoretical behaviour of Pv3Rs when it is misspecified because of data derived
from half-sibling parasites. For simplicity, we consider only the case of a single recurrent episode and we assume
throughout that the prior distribution for recrudescence, relapse, and reinfection is uniform.

Before proceeding, we recall an observations about the posterior odds of relapse to reinfection, and relapse to
recrudescence documented elsewhere. Let GC,GL, and GI denote subsets of the graph space G, containing the
relationship graphs compatible with recrudescence, relapse, and reinfection respectively. Given the prior on the
three recurrent states for the single recurrent infection is uniform, the posterior odds of relapse to reinfection is
given by

oL:I :=
P(y|L)
P(y|I)

=

∑
g∈GL

P(y|g)P(g|L)∑
g∈GI

P(y|g)P(g|I)
=

|GI|
|GL|

∑
g∈GL

P(y|g)∑
g∈GI

P(y|g)
=

|GI|
|GL|

(
1 +

∑
g∈GL\GI

P(y|g)∑
g∈GI

P(y|g)

)
, (1)

where GL \ GI is the subset of graphs compatible with relapse but not reinfection (graphs that have at least one
non-stranger inter-episode edge). Similarly, the posterior odds of relapse to recrudescence is given by

oL:C :=
P(y|L)
P(y|C)

=
|GC|
|GL|

(
1 +

∑
g∈GL\GC

P(y|g)∑
g∈GC

P(y|g)

)
. (2)

It follows from these results that oL:I ≥ |GI|/|GL| and oL:C ≥ |GC|/|GL|. In later sections, these bounds dictate
the limiting behaviour of posterior probabilities as the number of markers increase. They define a feasible set of
posterior probabilities, without any information about the genetic data. In the case of 2 genotypes in the initial
episode and 1 genotype in the recurrent episode, we have oL:I ≥ 2/9 and oL:C ≥ 4/9. The resulting feasible set of
posterior probabilities is shown in Figure 1.

Number of genotypes
in initial episode

Number of genotypes in recurrent episode

1 2 3 4 5

1 0.3333 0.2222 0.1667 0.1339 0.1123
2 0.2222 0.1026 0.0581 0.0375 0.0263
3 0.1667 0.0581 0.0257 0.0135 0.0080
4 0.1339 0.0375 0.0135 0.0059 0.0030
5 0.1123 0.0263 0.0080 0.0030 0.0013

Table 1: Values for |GI|/|GL| (lower bound of oL:I) for various graph sizes.

Half siblings

Half siblings share one parental genotype and draw collectively from three distinct parental genotypes. Given data
on half siblings, Pv3Rs potentially underestimates the posterior probability of relapse because under the Pv3Rs
model we assume an identity-by-descent (IBD) partition over siblings can have at most two cells; otherwise stated,
siblings inherit from at most two parents. This, combined with the fact that we do not model genotype errors,
means that the likelihood of a graph with a sibling component over three or more half siblings is zero as soon as
the half siblings inherit three distinct alleles.

We seek to describe scenarios where the odds oL:I are close to the lower bound |GI|/|GL| for a simple example
where there are 2 genotypes in the initial infection and 1 genotype in the recurrent infection. In what follows, we use
the relationship graph labels shown alongside the five IBD partitions in Figure 2. To reduce the analytical compu-
tation, we assume that there is some marker j′ such that there are three distinct alleles observed at marker j′ across
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Figure 1: Feasible set of posterior probabilities in the case of two genotypes in the initial episode and one genotype
in the recurrent episode. Dashed lines intersect the left and bottom edges of the simplex at 4

9 and 2
9 , respectively.

the two episodes. This allows us to rule out the possibility of recrudescence, and also the graphs gII, gIII, gVII, gVIII,
and gIX. In particular, we note that these three genotypes cannot be full siblings, which makes our subsequent
analysis more specific to the scenario of half siblings. Under this scenario, the formula in (1) simplifies to

oL:I =
2

9

(
1 +

P(y|gV) + P(y|gVI)

P(y|gI) + P(y|gIV)

)
=

2

9

(
1 +

∏M
j=1 P(y·j |gV) +

∏M
j=1 P(y·j |gVI)∏M

j=1 P(y·j |gI) +
∏M

j=1 P(y·j |gIV)

)
, (3)

where y·j denotes the alleles observed at marker j. Note that the products account for all the phasing possibilities.
To compute (3), we provide expressions for P(y·j |gr) up to some proportionality constant that is the same for each
r = I, IV,V,VI, but can vary across j. One further simplifying step is to note that P(y·j |gV) = P(y·j |gVI) due to
symmetry upon accounting for all possible allele assignments.

Case 1: All differ: three distinct alleles are observed across the two episodes.
In this case, the common term f(αj)f(βj)f(γj) cancels and thus we have

P(y·j |gI) ∝ 1, P(y·j |gIV) = P(y·j |gV) ∝ 1/2.

Case 2: All match: the same allele is observed for all three genotypes.
In this case, the common term f(αj)

2 cancels and thus we have

P(y·j |gI) ∝ f(αj)
3

∝ f(αj),

P(y·j |gIV) = P(y·j |gV) ∝ (f(αj)
2 + f(αj)

3)/2

∝ (1 + f(αj))/2.

Case 3: Intra-match: one allele is observed for the initial episode; a different allele for the recurrent episode.
In this case, the common term f(αj)f(βj) cancels and thus we have

P(y·j |gI) ∝ f(αj)
2f(βj)

∝ f(αj),

P(y·j |gIV) ∝ (f(αj) + f(αj)
2)f(βj)/2

∝ (1 + f(αj))/2,

P(y·j |gV) ∝ f(αj)
2f(βj)/2

∝ f(αj)/2.

Case 4: Inter-match: two alleles are observed for the initial episode, one of which reappears at recurrence.
In this case, the common term f(αj)f(βj) cancels and thus we have

P(y·j |gI) ∝ f(αj)
2f(βj)

∝ f(αj),

P(y·j |gIV) ∝ f(αj)
2f(βj)/2

∝ f(αj)/2.

P(y·j |gV) ∝ 1/2((f(αj) + f(αj)
2)/2 + f(αj)

2/2)f(βj)

∝ (1 + 2f(αj))/4.
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Figure 2: Relationsiph graphs (gI to gIX) and identity-by-descent (IBD) partitions (pI to pV) for the case of two
genotypes in the t = 0 initial episode and one genotype in a t = 1 recurrent episode.

Note that the computation for P(y·j |gV) is more complex as the two allele-to-vertex assignments result in different
likelihoods.

These cases are hereafter referred to as observation cases. To illustrate how these observation cases can be
combined to compute oL:I, consider an example where we have m = 3 markers, and the alleles observed for marker
j follow observation case j for j = 1, 2, 3. Recalling that P(y·j |gV) = P(y·j |gVI), we compute the odds to be

oL:I|marker j follows case j for j = 1, 2, 3 =
2

9

(
1 +

2
∏M

j=1 P(y·j |gV)∏M
j=1 P(y·j |gI) +

∏M
j=1 P(y·j |gIV)

)

=
2

9

(
1 +

2 · 1/2 · (1 + f(α2))/2 · f(α3)/2

1 · f(α2) · f(α3) + 1/2 · (1 + f(α2))/2 · (1 + f(α3))/2

)
=

2

9

(
1 +

(1 + f(α2))f(α3)/4

f(α2)f(α3) + (1 + f(α2))(1 + f(α3))/8

)
.

As f(α3) → 0, oL:I approaches 2/9, which is the minimum possible value of oL:I. We also have

oL:I|marker j follows case j for j = 1, 2, 3 =
2

9

(
1 +

(1 + f(α2))f(α3)/4

f(α2)f(α3) + (1 + f(α2))(1 + f(α3))/8

)
≤ 2

9

(
1 +

(1 + f(α2))f(α3)/4

(1 + f(α2))(1 + f(α3))/8

)
=

2

9

(
3− 2

1 + f(α3)

)
≤ 4

9
since f(a3) ≤ 1,

where equality holds when f(α2) = 0 and f(α3) = 1.

Special case: three equifrequent alleles per marker

We now turn our attention to the case where every possible allele (3 per marker) is assumed to have a frequency of
1/3. For each c = 1, . . . , 4, let mc denote the number of markers where the alleles observed correspond to observation
case c (e.g., m2 = 3 means all alleles match at three markers). Note that we have m = m1 +m2 +m3 +m4, and
the assumption that there is some marker j′ such that there are three distinct alleles observed at marker j′ can be
expressed as m1 ≥ 1. Substituting f(αj) = 1/3 into (3) for each j = 1, . . . , 4 gives (4), where the second term in the
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parentheses is expressed in base two for interpretability as follows.

oL:I =
2

9

(
1 +

2 · (1/2)m1 · (2/3)m2 · (1/6)m3 · (5/12)m4

1m1 · (1/3)m2 · (1/3)m3 · (1/3)m4 + (1/2)m1 · (2/3)m2 · (2/3)m3 · (1/6)m4

)
=

2

9

(
1 +

2 · (5/2)m4

2m1 · (1/2)m2 · 2m3 · 2m4 + 4m3

)
=

2

9

(
1 +

2log2(5/2)m4+1

2m−2m2 + 22m3

)
. (4)

Next, suppose that the three genotypes are offspring genotypes generated under the following sampling scheme:

1. Sample three parental genotypes, with alleles drawn randomly according to their frequency.

2. For each pair of parental genotypes, produce an offspring genotype, with alleles drawn uniformly at random
from the two parents.

Under this sampling scheme, and the assumption of equifrequent alleles, the first step can result in one of 27 equally
likely outcomes. For each of these outcomes, there are 8 possible ways for the offspring to draw alleles from the
parents. By grouping these 27× 8 = 216 possibilities, we find that observation cases 1, 2, 3, 4 are expected to occur
for 1/18, 5/18, 2/9, 4/9 of the markers respectively. This means that for large m, we expect that m4,m − 2m2, 2m3

should all be ‘close’ to 4/9 ·m. The extra constant of log2(5/2) in the exponent of the numerator in (4) implies that

the odds diverge to ∞ as m → ∞ because for large m, oL:I ∼ 2
9

(
1 + 2

4
9m log2(5/4)

)
. However, in the case of finite

m, a small perturbation to the ratios between m4,m− 2m2, 2m3 can lead to a large deviation in the odds. Let m̄c

denote the expected number of markers that correspond to the observation case c for c = 1, 2, 3, 4. Consider the
case where (m1,m2,m3,m4) = (m̄1, m̄2, m̄3 + 0.08m, m̄4 − 0.08m), i.e., where there is a slight over-representation
of intra- versus inter-matches. We have

oL:I =
2

9

(
1 +

20.4818m+1

20.4444m + 20.6044m

)
<

2

9

(
1 + 2−0.123m+1

)
,

which quickly converges to 2/9 as m increases. From (4), we expect the posterior probability to concentrate on
relapse (reinfection) when the intra-to-inter match ratio m3/m4 is much smaller (larger) than 1/2 log2(5/2), as long
as the term 2m−2m2 is relatively negligible to compared to 22m3 . However, it is unlikely that these results will hold
under other scenarios, e.g. non-equifrequent alleles, bigger graph size, different number of possible alleles for each
marker, or a sampling scheme that does not follow the allele frequencies.

Beyond equifrequent alleles

Our analysis thus far demonstrates the value of studying the relative sizes of graph likelihoods, i.e. likelihood ratios
between different relationship graphs, for investigating misclassifying (inter-episode) half sibling relapse scenarios
as reinfections. Some of these likelihood ratios are sensitive to the frequency of the repeat allele, especially when
the frequency is small; see Table 2. In particular, when gIV (intra-sib) or gV (inter-sib) is comparatively favoured,
the likelihood ratio depends on the frequency f of the repeat allele. Note that the expressions coloured light blue
and green diverge to ∞ as f → 0.

However, the likelihood ratios shown in Table 2 are computed for one marker only. The ‘full’ likelihoods
P(y|g) =

∏m
j=1 P(y·j |g) depend also on the relative frequency of each observation case. As an illustration, consider

a scenario where rare alleles (alleles with very low frequency) are over-represented in the observed data, i.e. we
often encounter observation cases 2 (All match), 3 (Intra-match), 4 (Inter-match) with small f . We claim that
under this scenario, the full likelihood ratio P(y|gI)/P(y|gIV) (all strangers to intra-sib) should be quite small:
P(y|gI)/P(y|gIV) is the product of the likelihood ratios P(y·j |gI)/P(y·j |gIV) (first column of Table 2) over each
marker j. Since f is small, the effect of the small likelihood ratios under observation cases 2 (All match) and 3 (Intra-
match) would dominate observation case 4 (Inter-match), leading to a small full likelihood ratio P(y|gI)/P(y|gIV).
Similar reasoning applies to P(y|gI)/P(y|gV) (all strangers to inter-sib). On the other hand, the likelihood ratio
P(y|gIV)/P(y|gV) (intra-sib to inter-sib) is more sensitive to how small f is for each marker, and on the relative
frequencies of observation cases 3 and 4 (last column of Table 2). All else being equal, observation case 4 (Inter-
match) should occur twice as often as observation case 3 (Intra-match) due to symmetry. Since

1 + 1
f

(1 + 1
2f )

2
=

f2 + f

f2 + f + 1
4

→ 0 as f → 0,
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Observation
case

Likelihood ratio

P(y·j |gI)
P(y·j |gIV)

(
all stranger
intra-sib

)
P(y·j |gI)
P(y·j |gV)

(
all stranger
inter-sib

)
P(y·j |gIV)
P(y·j |gV)

(
intra-sib
inter-sib

)
1 (All differ) 2 2 1

2 (All match) 1
/(

1
2 + 1

2f

)
1
/(

1
2 + 1

2f

)
1

3 (Intra-match) 1
/(

1
2 + 1

2f

)
2

(
1 + 1

f

)
4 (Inter-match) 2 4f

1+2f 1
/(

1 + 1
2f

)
Table 2: Likelihood ratios (one marker) between different relationship graphs for observation cases 1, 2, 3, 4, where
f is the frequency of the repeat allele. Colours indicate which graph (gI, gIV, gV) is comparatively favoured given
an observation case. A ratio in black indicates that neither graph is clearly favoured, either because the ratio is
exactly 1, or because the ratio can be greater or less than 1 depending on f .

we expect that the full likelihood ratio P(y|gIV)/P(y|gV) (intra-sib to inter-sib) would be close to zero. By substi-
tuting these findings into (3), we expect the odds oL:I to be large under the large m, small f limit.

Now suppose we modify the offspring sampling scheme from Section such that there are d possible alleles for
each marker, with allele frequencies f1, f2, . . . , fd. The probabilities of the observation cases are given by:

P(All differ, case 1) =
3

2

∑
i<j<k

fifjfk, P(All match, case 2) =
∑
i

f3
i +

3

4

∑
i̸=j

f2
i fj ,

P(Intra-match, case 3) =
1

4

(
1−

∑
i

f3
i

)
, P(Inter-match, case 4) =

1

2

(
1−

∑
i

f3
i

)
,

(5)

where all summation indices are bounded between 1 and d. The working is omitted here, but (5) can be de-
rived by introducing latent binary variables corresponding to the specific parents each offspring inherits from, and
marginalising out these latent variables according to each observation case.

Now suppose that the parent alleles are sampled from

(f1, f2, . . . , fd) ∼ Dir(λ, λ, . . . , λ) (6)

for some concentration parameter λ > 0. The equifrequent assumption corresponds to setting λ → ∞. Under (6),
we use moments of the Dirichlet distribution to derive that

E[P(All differ, case 1)] =
(d− 1)(d− 2)λ2

4(dλ+ 1)(dλ+ 2)
, E[P(All match, case 2)] =

((3d+ 1)λ+ 8)(λ+ 1)

4(dλ+ 1)(dλ+ 2)
,

E[P(Intra-match, case 3)] =
1

2
E[P(Inter-match, case 4)] =

(d− 1)((d+ 1)λ+ 3)λ

4(dλ+ 1)(dλ+ 2)
.

(7)

Consider the case where λ → 0, i.e. one of the allele frequencies dominates the distribution. By inspecting the
leading order terms (lowest degree with respect to λ) in (7), we note that when λ → 0, case 1 (All differ) would be
the least common and case 2 (All match) would be the most common.

Limiting distributions give rise to erratic behaviour

In the case of d = 3 possible alleles per marker, large number of markers m, and λ → ∞, simulations show that
the likelihood ratio P(y|gIV)/P(y|gV) (intra-sib to inter-sib) is not always close to 0 (see online article “Understand
posterior estimates”). The same also occurs when λ → 0 (these simulations are not documented). We can corrob-
orate these results analytically. Let cj denote the observation case number for marker j. Using the results from
Table 2, we obtain

P(y|gIV)
P(y|gV)

=

∏
j : cj=3

(
1 +

1

f(αj)

)
∏

j : cj=4

(
1 +

1

2f(αj)

) . (8)
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Figure 3: Conditional distribution of the frequency of a repeat allele given observation case 3 or 4.

However, the distribution of f(αj), which we write below as f for brevity, does not simply follow (6) as we have
conditioned on observation case 3 or 4. Instead, the conditional density of the frequency f of the repeat allele is
given by (working not shown):

p(f |observation case 3) = p(f |observation case 4) =
3λ+ 2

4λ+ 3

(1 + f)fλ(1− f)2λ

B(λ+ 1, 2λ+ 1)
, (9)

where B(·, ·) denotes the beta function. The result is obtained by combining a beta prior for f (marginal distribution
of (6)) and a likelihood derived in a similar fashion to the results from (5). A plot of the conditional density (9) for
various values of λ is shown in Figure 3. Notice that as λ decreases, the conditional mean of the allele frequency
f increases, and the tails of the conditional density become heavier. This gives the following implications for the
likelihood ratio P(y|gIV)/P(y|gV), which is inversely related to the posterior probability of relapse (see (3)):

� When λ is very large, f is close to 1/3. From the calculations in Section 2.1 (for equifrequent alleles), the
likelihood ratio P(y|gIV)/P(y|gV) is close to 0. However, minor perturbations to the ratio m3/m4 can cause
this likelihood ratio to be larger than expected.

� As λ decreases, the conditional mean of f increases. The factors 1 + 1/f and 1 + 1/2f from (8) are thus
smaller on average, diminishing the effect of perturbing the ratio m3/m4. This makes the likelihood ratio
P(y|gIV)/P(y|gV) more likely to be close to 0.

� As λ gets close to 0, the tails of the conditional density of f become heavier. In particular, the factors 1+ 1/f
and 1 + 1/2f from (8) can be quite large for small values of f . Moreover, observation cases 3 and 4 occur
less frequently, thus the ratio m3/m4 is subject to greater perturbation due to stochasticity. Altogether, the
variance of the likelihood ratio P(y|gIV)/P(y|gV) increases, and thus the likelihood ratio itself is no longer
reliably close to 0.
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