Understand graph-prior ramifications

For a given recurrent state, we assume relationship graphs are uniformly distributed a priori. This has various
ramifications discussed below.
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1 Posterior bounds that are induced by the graph prior

When the prior probability on relapse is non-zero, posterior probabilities of reinfection and recrudescence never
reach one because all genetic data is always compatible with relapse. In this section, we discuss bounds on posterior
probabilities of reinfection and recrudescence; they are induced by the uniformity of the prior over relationship
graphs. Bounds define a feasible set of posterior probabilities without any information about the genetic data
beyond that used to derive the multiplicities of infection (MOIs). For example, in the case of two genotypes in
an enrolment episode followed by a monoclonal recurrence, when recurrent states are equally likely a priori, the
posterior probabilities of reinfection and recrudescence are upper bounded by 9/11 and 9/13, respectively. The feasible
set of posterior probabilities is shown in Figure

Recrudescence

Figure 1: Feasible set of posterior probabilities in the case
of two genotypes in the initial episode and one genotype in
the recurrent episode. Dashed lines intersect the left and

bottom edges of the simplex at % and 1—21, respectively.
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1.1 How bounds are derived

We start by making some observations about the posterior odds of relapse to reinfection / recrudescence; odds help
simplify some derivations.



1.1.1 Single recurrence

For clarity of exposition, we start with the case of a single recurrent episode. Let G¢, Gy, and G; denote subsets
of the graph space G, containing the relationship graphs compatible with recrudescence, relapse, and reinfection
respectively. (To be clear, Gy, is exactly G.) The posterior odds of relapse to recrudescence is given by
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where Gy, \ G¢ is the subset of graphs compatible with relapse but not recrudescence (graphs where genotypes from
the recurrent episode are not all clones from the initial episode). It follows that or.c > P)I9cl/p(c)|g.|. Note that

this inequality is close to equality when > 5 \g. P(ylg) < X g, P(ylg).

Similarly, the posterior odds of relapse to reinfection is given by
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It follows that op; > F(MIGil/em)g.|. Note that this inequality is close to equality when > g \g P(ylg) <
>_geq, P(Ylg).

The posterior odds or.cc can be defined similarly, but analogous lower bounds are not available. This is because G¢
and G; do not intersect. Thus, we simply note that or.c = 0 when P(y|I) < P(yC).

As for the posterior probabilities, we have
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This inequality is close to equality when 3 g \g P(ylg) < X cg  P(ylg) and P(y|I) < P(y|C). Note that the
former implies the latter as G1 C Gy, \ G¢.

Similarly, we have
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Likewise, this inequality is close to equality when 3 9€GL\G1 P(ylg
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1.1.2 More than one recurrence

When there is more than one recurrence and prior probabilities are non-zero, the maximum probabilities of all
sequences are non-certain with the exception of the relapse-only sequence. As before, we can compute odds; for
example
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However, unlike before, we cannot always derive maximum posterior probabilities from the odds because the prob-
abilities of the remaining sequences are not necessarily zero (the exception being when the odds of an all-but-one-
relapse to all-relapse sequence are maximised). Instead, we must compute maximum probabilities the long way; for



example,
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when Y 9€Gec P(y|g) significantly exceeds the summation over all other subsets of graph space in equation .

Bounds on marginal posteriors are harder to compute because computation involves summation over sequences
whose probabilities are not necessarily zero. For example, the bound on recrudescence at the first recurrence of two
recurrences, may be close to one of three upper bounds each involving non-zero probabilities:

1. bound given maximal CC probability (probabilities of CI & CL are not necessarily both zero)
2. bound given maximal CL probability (probabilities of CC & CI are not necessarily both zero)
3. bound given maximal CI probability (probabilities of CC & CL are not necessarily both zero)

Digression In the online article |“Understand posterior estimates” we compute maximum marginal probabilities
of recrudescence / reinfection at the first recurrence of two / three recurrences. These maxima are not bounds
imposed by the prior: they are based on additional knowledge that there are no recurrent data on all but the first
recurrence. The computation only holds because all episodes are monoclonal. When all episodes are monoclonal,
the likelihood of equivalent sequences (e.g., CC, CI and CL in the case of two recurrences with strong evidence of
recrudescence on the first and no data on the second) are equal (otherwise, they are unequal for reasons analogous
to those that explain departure from the prior in the section “Data on only one episode”) and graph likelihoods
are equal for all graphs compatible with equivalent sequences (e.g., P(y|g) is the same Vg € Gcc, Vg € Gar,
and Vg € Gt in the case of two recurrences with strong evidence of recrudescence on the first and no data on the
second). Given a uniform prior on recurrent states, three monoclonal episodes with strong evidence of recrudescence
for the first recurrence and no data on the second recurrence, we thus have
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The same reasoning applies given strong evidence of reinfection.

2 Bounds as indicators of data informativeness

By comparing probability estimates to their respective bounds, we might like to answer the question: could the
posterior probability of my most probable state sequence be higher if we had data on more markers? However, we
cannot guarantee convergence onto bounds. In the case of a marginal probability, the bound is the maximum of
multiple upper bounds (see example above), and thus convergence is not guaranteed; in the case of a non-marginal
probability, we suspect convergence might depend on the relationship graph from which the data are generated.


https://aimeertaylor.github.io/Pv3Rs/articles/posterior-probabilities.html

3 How bounds induced by the graph prior change with MOI

In this section we explore how maximum probabilities of recrudescence / reinfection given a single recurrence change
with graph size, where maximum probabilities are those induced by the the graph prior. Maximum probabilities of
reinfection increase with the size of the graph, both when MOIs of the enrolment episode and the first recurrence
are equal (plot ??, centre) and not (plot ??, off-centre). Maximum probabilities of recrudescence increase with
graph size when the MOIs of the enrolment episode and the first recurrence are equal (plot ??, centre); they
decrease with increasing disparity between the higher MOI of the enrolment episode and the lower MOI of the first
recurrence (plot ?7?, right of centre). Note that, when the MOI of first recurrence exceeds that of the enrolment
episode, recrudescence has zero posterior probability because we assume under the Pv3Rs model that all parasites
are detected and that there are no genotyping errors; as such, a recrudescence can be at most as diverse as the
preceding episode.
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Figure 2: Maximum probabilities of recrudescence / reinfection given a single recurrence.

4 A counter-intuitive property

The a priori assumption that all valid relationships graphs g are equally likely given a recurrent state leads to a
counter-intuitive property. Specifically, the probability of an edge can vary depending on the graph it is embedded
within. Consider the scenario where one monoclonal recurrence follows a monoclonal enrolment episode.

Because we assume that the three relationship graphs are equally likely given relapse, the probability distribution
of the edge between the two genotypes given relapse is
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P(the two genotypes are siblings|s = L) = 1/3
P(the two genotypes are strangers|s = L) = 1/3.
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Now consider the scenario in which there is an additional monoclonal recurrence.

There are now 12 relationship graphs, which are assumed to be equally likely under relapses. Among them,
between the first two genotypes, three have a clonal edge, four have a sibling edge, and five have a stranger edge.
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v Reinfection recrudescence / reinfection increases / decreases with ad-
ditional recurrences devoid of data. The prior on recur-
A rent states is uniform. The maximum probabilities are
/A/ those based on knowledge that there are no recurrent
/A data for all but the first recurrence and all episodes are
monoclonal. For example, from equations (??) and (?7)

we have I9cl/|g,| = 1/3 > I9cLl/ig,| = 3/12. Plugging

\V I9cl/lgr] = 1/3 into equation 7 and 19ctl/ig | = 3/12

plus |9ccl/ig o] = 1/3 and 19cil/jg,| = 1/3 into equation

0.85
|

Maximum probability of first recurrence
0.75
|

[=} T -
S v v— , we see that the probability that the first recurrence
v is a recrudescence when recurrent states are equally likely
a priori increases slightly from 3/4 to 3/(3 + 11/12) with the
8 addition of the second recurrence without data.
S | | | w w |
2 3 4 5 6 7 8

Number of monoclonal episodes

The probability distribution of the edge between the first two genotypes given relapses is thus

P(the first two genotypes are clones|s = LL) = 3/12, (9)
P(the first two genotypes are siblings|s = LL) = 4/12, (10)
P(the first two genotypes are strangers|s = LL) = 5/12. (11)

An explanation for the change in the probability distribution of the edge between the first two genotypes upon the
addition of the second relapse is that a clonal edge between the first two genotypes imposes a constraint where the
two remaining edges must exhibit the same relationship. Similarly, a sibling edge between the first two genotypes is
incompatible with a single stranger edge among the two remaining edges. In general, the pattern that stranger edges
are more likely a priori and clonal edges are less likely a priori becomes more prominent when more genotypes are
present. For monoclonal episodes, this change in distribution over the edge between the first two genotypes results
in an increase / decrease in the maximum probability that the first recurrence is a recrudescence / reinfection with
the addition of monoclonal recurrences devoid of data (Figure ?77?), where the maximum probabilities are those
assuming all episodes are monoclonal and there are no recurrent data on all but the first recurrence (e.g., as in

equation (F)).
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