Understand graph and partition enumeration

Enumerating relationship graphs

Relationship graphs as nested partitions

The function enumerate RGs enumerates all relationship graphs (RGs). A relationship graph can be interpreted as
a nested partition. Label the n genotypes (one per vertex) as v, ..., v,. A clonal partition p' = {c{, ..., cf}cl} isa
partition of {v1,...,v,} where two genotypes are in the same cell if they have a clonal relationship, and where n°!
is the number of cells of the clonal partition (number of clonal cells). A relationship graph can be represented as a
partition of p°!, where two clonal cells are in the same subset if they have a sibling relationship. So to enumerate
all relationship graphs, we can first enumerate all clonal partitions, and then enumerate the sibling partitions over
each clonal partition.

As an example, suppose that we have n = 4 genotypes with the following relationships: v, and v3 are clones, v,
and vy are siblings, vy and v3 are siblings, while vy is a stranger to all other genotypes. The corresponding clonal
partition can be written as

c(ljl = {1}1,113}, cgl = {U2}7 c(?il = {U4}a

and the sibling partition is {{c§', c5'}, {5} 1.

Enumerating clonal partitions

The function enumerate_CPs enumerates all clonal partitions (CPs). Each clonal partition can be written as a
membership vector ¢ = (q1,...,qn) € {1,... 7n‘”}”7 which indicates that for each i = 1,...,n, the genotype v;
belongs to cgi, the g;-th clonal cell. In order to have a one-to-one correspondence between the membership vectors
and the clonal partitions, we require that the first appearance of any positive integer r in ¢ must come after the first

appearances of 1,...,r — 1. For the previous example, we have the membership vector (1,2,1,3). A complication
about clonal partitions is the fact that genotypes from the same infection cannot belong to the same clonal cell.
Let us denote the MOIs as My, ..., M. This restriction can can be expressed as
qa # qa forany 1 <d < d < My,
AMo+d 7 AMy+d’ forany 1 <d < d < Mj, and
AMo+..+M,_1+d 7 QMo+...+My_y+d’ for any 1 < d < d < M; when t > 2.

We now describe an algorithm to enumerate all clonal partitions by generating all valid membership vectors in
lexicographical order. We first initialise ¢ according to

Qd:d fOI‘le,...,Mo,
qMo+d = d ford=1,...,M;, and
AMo+.. A Me_y+d = d ford=1,...,M; when t > 2,

which is lexicographically the smallest membership vector. Note that the first My entries of q are fixed due to the
restrictions involved. Generating the next membership vector can be broken down into three steps: (i) identifying
the shortest suffix that can be changed, (ii) changing the entries of the episode from which the suffix starts from,
(iii) replace the remaining part of the suffix with the initial membership vector.

We illustrate these steps with an example where there are & = 2 recurrent episodes, My = 1, M; = 2, and
My = 1. The initial membership vector is ¢ = (1,1,2,1). The shortest suffix that can be changed is to change the
final 1 to a 2. In this iteration, steps (ii) and (iii) do not apply, and we get g = (1, 1,2,2). The following iteration
follows the same logic, which gives ¢ = (1, 1,2, 3). In the next iteration, we cannot increase the 2 nor the 3, as there
are no earlier appearances of those numbers. Step (i) identifies that we have to change the suffix (1,2, 3). Step (ii)



changes the entries of the first recurrent episode to (2,1), whereas step (iii) replaces the remaining part of the suffix
with the initial membership vector (1,1,2,1), i.e. replace the last entry with 1. This results in ¢ = (1,2,1,1). The
full list of membership vectors is

(17 17 27 1)a (15 17 27 2)a (17 17 27 3)7 (1, 27 1a 1)a (17 27 1a 2)) (17 27 1a 3)7 (17 2a 37 1)7 (1a 2a 3) 2)7 (1a 27 373)7 (1a 2) 374)
Here are the steps in detail:

(i) To identify the appropriate suffix, we have to find the rightmost entry of g that has an earlier appearance.
This is where the suffix should begin. To find this entry efficiently, it helps to have a prefix maximum vector
q = (q},...,q;) where ¢f =0 and ¢ = max{q1,...,qi—1} for i =2,...,n. An interpretation of g* is that the
numbers 1, ..., ¢/ have all appeared within the first ¢ — 1 entries of q. Thus, the largest ¢ for which ¢; < ¢} is
the index where the suffix begins, as ¢; must have already appeared prior to index i, and so the value at index
i can be increased. Such an index ¢ fails to exist only when we reach the final membership vector (1,...,n).

(ii) Suppose that we selected index 7 in step (i), and that genotype v; belongs to episode t. We now have to
update the entries at indices 7,4+ 1,..., My + ...+ M;, which cannot coincide with any earlier entries within
episode t. Denote the set of disallowed values as D = {qaro+..+M,_1+1,---»4i—1}. We introduce a candidate
value ¢, which is initialised to ¢; + 1, as the next membership vector we generate must be lexicographically
greater. We repeatedly check whether the candidate value ¢ is in D. If ¢ € D, then we increment ¢ by one.
Otherwise, we update the entry at index i to ¢, add c¢ to the set D, increment i by one, and reset ¢ to 1. This
process terminates when all entries at indices i, 4+ 1,..., My + ...+ M; have all been updated.

(iii) The remaining values of the suffix should take the smallest possible values, which coincide with the initial
membership vector. We then store the membership vector, and update the prefix maximum vector using the
recurrence relation ¢}, = max(q}, gi) fori' =di,i+1,...,n— 1.

Putting it together

Enumerating sibling partitions can be done by the function partitions: :setparts as they are simply the usual
set partitions. This can be pre-computed so that we do not need to call the function repeatedly. Note that
partitions: :setparts also returns the partitions in a membership vector format. The function split converts
the vector format to a partition format (list).

Enumerating identity-by-descent partitions

The function enumerate_IPs_RG enumerates all identity-by-descent partitions (IPs) given a relationship graph (RG).
The language of clonal and sibling partitions allows the restrictions on identity-by-descent (IBD) partitions to be
easily stated: an IBD partition of a relationship graph is a partition over the cells of the clonal partition that must
be finer than the sibling partition, and each sibling cell may only contain at most two IBD cells (this is only true
because we ignore half siblings).

One way to compute P(p|g) is to enumerate all p compatible with g and consider each equally likely. By defi-
nition, all genotypes from the same clonal cell inherit the same allele. For each sibling cell, its clonal cells inherit
from one of two parents (two by assumption; a more realistic model would allow for more than two parents, thereby
accounting for half-siblings). So the number of IBD partitions over a sibling cell is 27 clonal cells in sibling cell=1 “51] of
which are equally likely. The —1 term comes from the fact that we divide 27 clonal cells in sibling cell )y 9 hecause swap-
ping the two parents results in the same IBD partition. We can apply this argument to each sibling cell to enumerate
the IBD partitions over all genotypes (i.e., 2# clonal cells in first sibling cell-1 o# clonal cells in second sibling cell-1 o _
9# clonal cells — 4 sibling cells) each having equal probability of (.57 clonal cells — # sibling cells

The function enumerate_IPs_RG uses a helper function split_two to split each sibling cell of clonal cells into
two IBD cells, or to keep the whole sibling cell as an IBD cell. The set of IBD partitions is then the Cartesian
product over the splits of each sibling cell. The uniform (log) probability P(p|g) is accounted for by the log(n.IPs)
term in RG_inference.

Equivalently, an obsolete function compute_pr_IP_RG, which was superseded by enumerate_IPs_RG, computed
the probability of an IBD partition given a relationship graph based on a partition model detailed below. Note
that both approaches are viable only because we assume the parasite population is entirely outbred. That is to
say, we assume parasites have an infinitely large pool of parasite lineages to draw from, such that the probability
of drawing the same lineage twice or more from the pool is zero. Strangers draw directly from the pool, thus have



zero probability of being IBD; siblings draw from two parental lineages drawn from the pool, thus are IBD with
probability 0.5; clones are copies of a single parental lineage drawn from the pool, thus are IBD with certainty.

intra-cell probability if |p| = 1,
P(p|g) = { intra- and inter-cell probabilities multiplied if 1 < |p| < n, (1)
inter-cell probabilities multiplied if |p| = n,

where

0 if there are any clonal edges in g that connect cells of p,

. . 0 if three or more cells of p are interconnected by sibling edges in g,

inter-cell probability = ) ) ) ] (2)
0.5™pairs otherwise, where np,irs is the number of pairs of cells in p

that are connected by siblings in g,

0 if there are any strangers within the cell,
intra-cell probability = ¢ 1 if there are only clones within the cells, (3)
0.5™sis~1 otherwise, where ngjps is the number of siblings within the cell.

To see the equivalence between the two approaches, note that np,irs is the number of sibling cells that have been
split into two IBD cells, which is equal to

Npairs = 7 1BD cells — # sibling cells.
On the other hand, we have for each IBD cell that
nsibs = 7+ clonal cells in IBD cell.

Assuming that the IBD partition is consistent with the relationship graph, multiplying the inter-cell probability
with all intra-cell probabilities is equivalent to exponentiating 0.5 with

Npairs + Z(nsibs — 1) = # IBD cells — # sibling cells + Z(# clonal cells in IBD cell — 1)
IBD cells IBD cells
= # IBD cells — # sibling cells 4+ # clonal cells — # IBD cells

= # clonal cells — # sibling cells,

# clonal cells—# sibling cells

which matches the expression 0.5 from above.



